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Abstract: This paper group the trajectories objects of moving data. Our observation that develops the new algorithms 

that manage Minimum Description Length (MDL). This paper based on k-nearest algorithm with LCSS model and 

dimensional Euclidean. Our algorithm consists of two parts that is partitioning and grouping phase. Experimental result 

searching the minimum distance by using MOTRACLUS algorithm and analysis the sub-trajectories and real-

trajectories. The experimental analysis gives moving object of trajectory animals.  
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I. INTRODUCTION 

In this paper we investigate the problem of discovering similar trajectories of moving objects. The trajectory of a 

moving object is typically modelled as a sequence of consecutive locations in a multidimensional (generally two or 

three dimensional) Euclidean space. Such data types arise in many applications where the location of a given object is 

measured repeatedly over time. Examples include features extracted from video clips, animal mobility experiments, 

sign language recognition, mobile phone usage, multiple attribute response curves in drug therapy, and so on. 

Moreover, the recent advances in mobile computing, sensor and GPS technology have made it possible to collect large 

amounts of spatiotemporal data and there is increasing interest to perform data analysis tasks over this data [4]. For 
example, in mobile computing, users equipped with mobile devices move in space and register their location at different 

time instants via wireless links to spatiotemporal databases. In environmental information systems, tracking animals 

and weather conditions is very common and large datasets can be created by storing locations of observed objects over 

time. Data analysis in such data includes determining and finding objects that moved in a similar way or followed a 

certain motion pattern. An appropriate and efficient model for defining the similarity for trajectory data will be very 

important for the quality of the data analysis task. Robust distance metrics for trajectories, In general these trajectories 

will be obtained during a tracking procedure, with the aid of various sensors. Here also lies the main obstacle of such 

data; they may contain a significant amount of outliers or in other words incorrect data measurements (unlike for 

example, stock data which contain no errors whatsoever. Our objective is the automatic classification of trajectories 

using Nearest Neighbor Classification. It has been shown that the one nearest neighbor rule has asymptotic error rate 

that is at most twice the Bayes error rate [12]. Previous approaches to model the similarity between time-series include 

the use of the Euclidean and the Dynamic Time Warping (DTW) distance, which however are relatively sensitive to 
noise. Distance functions that are robust to extremely noisy data will typically violate the triangular inequality. These 

functions achieve this by not considering the most dissimilar parts of the objects. However, they are useful, because 

they represent an accurate model of the human perception, since when comparing any kind of data (images, trajectories 

etc), we mostly focus on the portions that are similar and we are willing to pay less attention to regions of great 

dissimilarity. For this kind of data we need distance functions that can address the following issues: Different Sampling 

Rates or different speeds. The time-series that we obtain, are not guaranteed to be the outcome of sampling at fixed time 

intervals. The sensors collecting the data may fail for some period of time, leading to inconsistent sampling rates. 

Moreover, two time series moving at exactly the similar way, but one moving at twice the speed of the other will result 

(most probably) to a very large Euclidean distance. 

 

II. RELATED WORK 
In this Section, we study previous work based on two major discovery techniques, Markov chain models and 

spatiotemporal data mining, for extracting movement patterns of an object from historical trajectories. Markov chain 

models have been widely used in order to estimate the probability of an object’s movements from one region or state to 

another at next time period. Ishikawa et al. derive the Markov transition probabilities between cells from indexed 

trajectories [1].  

 

In their further study [7], a special type of histogram, called mobility histogram, is used to describe mobility statistics 

based on the Markov chain model. They also represent the histogram as cube-like logical structures and support an 

OLAP-style analysis. Authors in [8] classify an object’s mobility patterns into three states (stationary state, linear 
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movement, and random movement) and apply Markov transition probabilities to explain a movement change one state 

to another. [9, 10] consider the location tracking problem in PCS networks.  

Both studies are based on the same Markov process in order to describe users’ movements from one or multiple PCS 

cells to another cell. However, they have different ways to model users’ mobilities using Morkov models, thus, show 

distinct results to each other.  

 

Spatiotemporal data mining methods have been also studied well for describing objects’ patterns. [2] Introduces mining 

algorithms that detect a user’s moving patterns, and exploits the mined information to invent a data allocation method in 

a mobile computing environment. Another mining technique is shown in [11]. This study focuses on discovering spatio-

temporal patterns in environmental data. In [6], authors do not only explore periodic patterns of objects but also present 

indexing and querying techniques of the discovered or no discovered pattern information. [3, 4] address spatio-temporal 
association rules of the form (ri,t1,p)→ (rj,t2) with an appearance probability p, where i and rj are regions at time 

(interval) t1 and t2 respectively (t2>t1). It implies that an object in ri at time t1 is likely to appear in rj at time t2 with p% 

probability. Besides, [3] considers spatial semantic areas (i.e. sources, sinks, stationary regions, and thoroughfares) in 

each ri as well as more comprehensive definitions and algorithms of spatio-temporal association rules.  

 

All above studies except [6] are based on the space-partitioning schemes, thus, the discovery accuracy depends on how 

the system decides space granularity of data space. When they partition the data space into a large number of small size 

cells, the accuracy increases, however, managing such many cells in memory can be burden to the system. On the 

contrary, using large size cells for partitioning cause low precision of discovery. Moreover, they cannot avoid the 

answer-loss problem no matter how the spatial granularity is set to. 

 

III.   PROPOSED ALGORITHM 

The MOTRACLUS Algorithm 

 

The moving object trajectory clustering algorithm MOTRACLUS consist of two phases. Its execute two algorithms to 

perform the subtasks (lines 2 and 4), in the first phase we execute the trajectory partitioning algorithm and then second 

phase we execute the trajectory clustering algorithm. We detailed explain these algorithms in Section 1 and 2. 

 

Algorithm MOTRACLUS (Moving Object-Trajectory Clustering) 

 

Input:      A set of trajectories I = {TRJ1,···,TRJntr} 

Output: (1) A set of clusters O = {CL1,···,CLncls} 

 (2) A set of representative trajectories 
 

Algorithm: 

 

         /* Partitioning Phase */ 

01:    for each (TRJ ∈ I) do 

02: Execute Approximate Trajectory Partitioning; 

    Gets a set L of line segments using the result; 

03:    Accumulate L into a set D; 

         /* Grouping Phase */ 

04:             Execute Relative Density-Based Clustering for D;  

   Get a set of clusters as the result; 

 

1. Trajectory Partitioning  

In this section, we propose a trajectory partitioning algorithm for the partitioning phase. We first discuss two desirable 

properties of trajectory partitioning. We then describe a formal method for achieving these properties. Our method 

transforms trajectory partitioning to MDL optimization. Since the cost of finding the optimal solution is too high, we 

present an O(n) approximate algorithm. 

 

Desirable Properties  
We aim at finding the points where the behavior of a trajectory changes rapidly, which we call characteristic points. 

From a trajectory TRi=  p1p2p3…..pj…..pleniwe determine a set of characteristic points {pc1, pc2, pc3, ···, pcpari} (c1< 

c2< c3< ··· < cpari). Then, the trajectory TRi is partitioned at every characteristic point, and each partition is represented 

by a line segment between two consecutive characteristic points. That is, TRi is partitioned into a set of (pari−1) line 
segments{pc1pc2, pc2pc3,···, pcpari−1pcpari}. We call such a line segment a trajectory partition. Figure 6 shows an example 

of a trajectory and its trajectory partitions. 
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Fig.1. Example of a trajectory & its trajectory partitions 

 

Formalization Using the MDL Principle 
We propose a method of finding the optimal trade of between preciseness and conciseness. We adopt the minimum 

description length (MDL) principle widely used in information theory. The MDL cost consists of two components [9]: 

L(H) and L(D|H). Here, H means the hypothesis and D the data. The two components are informally stated as 

follows[9]: “L(H) is the length, in bits, of the description of the hypothesis; and L(D|H) is the length, in bits, of the 

description of the data when encoded with the help of the hypothesis.” we formulate L(H) by Formula (1). Here, len 

(pcjpcj+1) denotes the length of a line segment pcjpcj+1, i.e., the Euclidean distance between pcj and pcj+1. Hence, 

L(H) represents the sum of the length of all trajectory partitions. On the other hand, we formulate L(D|H) by Formula 

(2).L (D|H) represents the sum of the difference between a trajectory and a set of its trajectory partitions.  
 

𝐿 𝐻 =  log2(𝑙𝑒𝑛(p𝑐𝑗 p𝑐𝑗 +1))
𝑝𝑎𝑟  𝑖 −1

𝑗=1
                           (1) 

 

 𝐿  
𝐷

𝐻
 =  𝑝𝑎𝑟  𝑖−1

𝑗=1  {log2  d1 p𝑐𝑗 p𝑐𝑗+1 , p𝑘p𝑘+1  
𝑐𝑗 +1−1

𝑘=𝑐𝑗

+ log2  dɵ p𝑐𝑗 p𝑐𝑗+1 , p𝑘p𝑘+1  }       (2) 

 

Approximate Solution 
The algorithm Approximate Trajectory Partitioning shows below. We compute MDLpar and MDLnopar for each point in 

a trajectory (lines 5∼6). If  MDLpar is greater than MDLnopar, we insert the immediately previous point pcurrIndex−1 

into the set CPi of characteristic points (line 8). Then, we repeat the same procedure from that point (line 9). Otherwise, 

we increase the length of a candidate trajectory partition (line 11). 

 

Algorithm Approximate Trajectory Partitioning 

Input: A trajectory TRi = p1p2p3···pj ···pleni   

Output: A set CPi of characteristic points 

 

Algorithm: 

01:  Add p1 into the set CPi; /* the starting point */  
02:  startIndex := 1, length := 1;  

03:  while (startIndex + length ≤ leni) do 

04:   currIndex := startIndex + length;  

05:   costpar := MDLpar(pstartIndex, pcurrIndex);  

06:   costnopar := MDLnopar(pstartIndex, pcurrIndex);  

/* check if partitioning at the current point makes the MDL cost larger than not partitioning */  

07:  if (costpar> costnopar) then 

/* partition at the previous point */  

08:    Add pcurrIndex − 1 into the set CPi; 

09:    startIndex := currIndex−1, length := 1;  

10:   else  
11:   ength := length + 1;  

12: Add pleni into the set CPi;    /* the ending point */ 

 

2. Trajectory Clustering 

In this section, we propose a trajectory clustering algorithm for the grouping phase. The procedure of relative density-

based cluster algorithms finding clusters is as follow. At first, it selects any core object p from data set D, and finds the 
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core set of p, and gets the initial cluster C1. Then it expands the cluster C1 until when no new object can be added to it. 

When all core objects from data set D are marked as member of some clusters, and there is no new object can be added 

to any cluster, the algorithm is over. The expanding method used by initial cluster C1 takes a two-step procedure. First, 

it expands the core set of object p and gets the expanded core set of cluster C1. Second, the method used to expand 

cluster C1 must meet with the condition that the core objects of expanded core set are density-reachable, and its detailed 

expanding method can be seen in the P-code description of ExpandCluster1 function. The P-code of relative density-

based cluster algorithm RDBKNN (Re1ative Density Based K-Nearest Neighbors Clustering) is described as below: 

 

Related concepts  

We describe relative density-based cluster algorithm RDBKNN with some related concepts.  

 
Definition 1 k-distance of an object p [4] For any positive integer k and data set D, the k-distance of object p, denoted 

as k-distance(p), is defined as the distance d(p,o) between p and an object oϵ D such that:  

 

(i) for at least k objects o’ ∈ D \ {p} it holds that d(p,o’) ≤ d(p,o), and 

(ii) for at most k-1 objects o’ ∈ D \ {p} it holds that d(p,o’) < d(p,o) 

 

Definition 2 k-distance neighborhood of an object p [4] Given the data set D and the k-distance of p, the k-distance 

neighborhood of p is defined as Nk-distance(p)(p) = { q . D\{p} | d(p, q).kdistance(p) }. It is also called the set of k-

nearest neighbors of p.  

 
Definition 3 Near Neighbor Distance of an object p w.r.t. object 0[4] Let k be a natural number. The Near Neighbor 

Distance of object p with respect to object o is defined as distk-distance (o) (p,o) = max { k-distance(o), d(p, 0) } ,  

 

Definition 5 the relative density of an object p w.r,t. its Nk-distance(p) (p) neighbors Given the data set D, p ∈ D, the 

relative Density of p with respect to its Nk-distance(p) (p) neighbors, denoted as rdk-distance(p)(p) is defined as: 

 

rdk-distance(p) (p)=

 𝑛𝑛𝑑  𝑘−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑜) (𝑜)/𝑛𝑛𝑑  𝑘−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝) (𝑝)

𝑜∈𝑁 𝑘−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑝  𝑃 

| 𝑁 𝑘−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝) 𝑝 |
 

 

The rdk-distance(p)(p) value reflects the difference between the near neighbors density of object p and its neighbors', 

when rdk-distance(p)(p) is close to 1, it illustrates that object p has a good relationship with its neighborhoods whose 

density are very close in data distribution, and they can be merged into a cluster very well.  

 

Algorithm Re1ative Density Based K-Nearest Neighbors Clustering (RDBKNN)  

 

RDBKNN (Set Setofpointp, int k, real α)  
// α is a threshold greater than zero (α>0).  

BEGIN  

REPEAT  

Pointp = GetCorePointp (Setofpointp, k, α); 

if pointp <> null then  

 Coreset1    = GetCoreSet1 (Setofpointp, pointp, k, α); 

 Clustered1 = GetClusterId1 ( ); 

 C1 = GetInitCluster1 (Setofpointp, pointp, CoreSet1, k, clusterID1); 

 ExpandCluster1 (Setofpointp, C1 , CoreSet1, k, α); 

 end if  

untill no more cluster can be expanded;  

end RDBKNN.  
The p-code of Expandcluster1 is described as follows:  

Expandcluster1 (Set Setofpointp, Cluster C1, Set CoreSet1, int k, real α)  

BEGIN  

 Seedset1 = CoreSet1;  

 while not SeedSet1.empty() DO  

 Pointp = GetOutPointp1 (SeedSet1);  

 NewCoreset1 = GetCoreSet1 (Setofpointp, pointp, k, α); 

  for j from 1 to NewCoreset1.size do  

   object1 = NewCoreset1.get (j);  
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   if | rd CoreSet1(object1) - 1 | < α then 

    SeedSet1 = SeedSet1 ∪ (object};  

    CoreSet1 = Coreset1 ∪  (object);  

   end if;  

  end for; 

 D =D ∪ nk-distance (point) (point);  

 end while;  

end Expandclus1. 

 

3. Experimental Evaluation 
In the experimental section, using the approximation algorithm we clustered & partitioned the moving object trajectory. 

We compare the clustering performance of our method to the widely used Euclidean and DTW distance functions.  
 

Table1. Correspondence values and running times cycle between two sequences from our ANIMALS dataset 

1. The Euclidean distance is only defined for sequences of the same length (and the length of our sequences varies 

considerably). We tried to offer the best possible comparison between every pair of sequences, by sliding the shorter of 

the two trajectories across the longer one and recording their minimum distance. 

 

2. For DTW we modified the original algorithm in order to match both x and y coordinates. In both DTW and Euclidean 

we normalized the data before computing the distances. Our method does not need any normalization, since it computes 

the necessary translations. 

 
3. For LCSS we used a randomized version with and without sampling, and for various values of ω. The time and the 

correct clustering’s represent the average values of 15 runs of the experiment. This is necessary due to the randomized 

nature of our approach. 
 

Distance Function Time cycle in (sec) 
Accurate Clusterings (out of 20) 

Complete Linkage 

Euclidean 45.85 4 

DTW 447.756 10 

LCSS:   

z=10%, φ=30% 4.644 19.900 

z=15%, φ=30% 10.021 19.956 

z=20%, φ=30% 20.261 20 

z=25%, φ=30% 38.851 20 

z=30%, φ=30% 55.076 20 

z=35%, φ=30% 75.309 20 

z=40%, φ=30% 133.694 20 

z=50%, φ=30% 455.844 20 

z=100%, φ=30% 868.388 20 
 

Table 2. Results for the vedio tracking data for various terms of sample z and φ. 

 

IV.   CONCLUSION 
In this paper give the result of movement of object of trajectory animals. This paper analysis the different part of 

partition algorithm and giving minimum running time of trajectories point. Paper compare N tries of series of 
movement of data wild animals. Also the respective result analysis the MOTRACLUS algorithm and noisy condition. 

Another approach used Euclidean space and map technique for partition and groups the points. 

 

 Correspondence Running time cycle in (sec) 

ω φ 
Actual 

time 
No of tries movement 

Actual 

time 
No of tries movement 

   5 10 26 52  5 10 26 52 

5 0.45 0.419 0.2045 0.42 0.323 0.433 19.905 0.0042 0.0037 0.0037 0.0042 

5 0.8 0.661 0.513 0.506 0.617 0.631 19.907 0.0044 0.00271 0.00271 0.0042 

6 0.45 0.489 0.376 0.358 0.806 0.233 42.452 0.0048 0.0032 0.0032 0.00491 

6 0.8 8.811 0.868 0.588 0.736 0.854 42.454 0.0048 0.0043 0.0043 0.00490 

7 0.45 0.603 0.320 0.453 0.673 0.485 96.245 0.00581 0.00341 0.00341 0.0042 

7 0.8 0.823 0.540 0.5935 0.631 0.689 96.256 0.00581 0.0026 0.0026 0.0042 
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